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概要

ノイマン境界条件のもとで，空間不均一な非線形拡散を持つ Fokker-Planck方程式を考察する．
この方程式は多孔質媒質型の非線形性を持つ自由エネルギーに空間不均一性を導入し，エネル

ギー散逸則，連続の方程式をもとに，導出されたものである．先の MCYR21では，時間大域的
古典解の存在を仮定した上での自由エネルギーの長時間挙動について報告した．本講演では，そ

の仮定の前提となる時間局所解の存在について得られたことを報告する．

1 非線形 Fokker-Planck方程式
Ω ⊂ R𝑛 は滑らかな境界を持つ有界凸領域，𝜈 は 𝜕Ω上の外向き単位法線ベクトル，𝛼 > 1の定数
とする．以下の非線形 Fokker-Planck方程式を考える．

𝜕𝜌

𝜕𝑡
− div(𝜌∇(𝛼𝑑 (𝑥)𝜌𝛼−1 + 𝜙(𝑥))) = 0, 𝑥 ∈ Ω, 𝑡 > 0,

𝜌(𝑥, 0) = 𝜌0 (𝑥), 𝑥 ∈ Ω,

𝜌∇(𝛼𝑑 (𝑥)𝜌𝛼−1 + 𝜙(𝑥)) · 𝜈 = 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0.

(NFP)

ここで，𝑑 = 𝑑 (𝑥) : Ω → R，𝜙(𝑥) : Ω → R，𝜌0 : Ω → Rは与えられた関数である．Ω上 𝑑, 𝜌0 > 0で
あり， ∫

Ω
𝜌0 𝑑𝑥 = 1 (1)

を仮定する．(1)の仮定は (NFP)が確率微分方程式と関係があることに由来する．

𝜇 := 𝛼𝑑 (𝑥)𝜌𝛼−1 + 𝜙(𝑥) (2)

とすると (NFP)は連続の方程式
𝜕𝜌

𝜕𝑡
− div(𝜌∇𝜇) = 0 (3)

と書き換えられる．連続の方程式と Gaussの発散定理から以下が成り立つ．
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補題 1.1. 𝜌 は (NFP)の正値な古典解とする．このとき，∫
Ω
𝜌0 𝑑𝑥 =

∫
Ω
𝜌 𝑑𝑥 = 1 (4)

となる．

次に自由エネルギーを

F [𝜌] (𝑡) :=
∫
Ω
(𝑑 (𝑥)𝜌𝛼 + 𝜌𝜙(𝑥)) 𝑑𝑥

と定義する．(NFP)と部分積分により

命題 1.2. 𝜌 は (NFP)の正値な古典解とすると

𝑑

𝑑𝑡
F [𝜌] (𝑡) = −

∫
Ω
|∇𝜇 |2𝜌 𝑑𝑥 ≤ 0 (5)

が成り立つ．

(5)を 0から 𝑇 > 0まで積分すると，

F [𝜌] (𝑇) +
∫ 𝑇

0

∫
Ω
|∇𝜇 |2𝜌 𝑑𝑥𝑑𝑡 = F [𝜌] (0) (6)

が成り立つ．F [𝜌] (0) < ∞を仮定したとき，(6)の両辺 𝑇 → ∞すると，広義積分が収束することか
ら，以下が成り立つ．

𝑡 𝑗 → ∞,

∫
Ω
|∇𝜇 |2𝜌 𝑑𝑥 → 0, 𝑗 → ∞ (7)

昨年度のMCYR21で以下を報告した．

定理 1.3 ([1, 2]). 次元 𝑛 = 1, 2, 3とする．(NFP)の時間大域的古典解 𝜌が存在し，ある正の定数 𝜆 > 0
が存在して ∇2𝜙(𝑥) > 𝜆𝐼 が成り立つと仮定する．このとき，ある正の定数 𝐶1, 𝐶2, 𝐶3 > 0が存在して

min
𝑥∈Ω

𝑑 (𝑥) ≥ 𝐶1, 𝛼𝑑 (𝑥)𝜌𝛼−1
0 (𝑥) > max 𝜙 − 𝜙(𝑥),

∫
Ω
|∇𝜇(𝑥, 0) |2𝜌0 (𝑥) 𝑑𝑥 < 𝐶2

が成り立つならば， ∫
Ω
|∇𝜇 |2𝜌 𝑑𝑥 < 𝐶3𝑒

−𝜆𝑡 (8)

が成り立つ．

注意 1.4. 定理 1.3の初期値の仮定は (NFP)の時間大域的古典解 𝜌 が正値で有界であるための条件で

ある．

定理 1.3では (NFP)の時間大域的古典解の存在を仮定している．(NFP)は div(𝜌∇(𝛼𝑑 (𝑥)𝜌𝛼−1)) の
項が存在するため，多孔質媒質型の非線形拡散を持つ．一般に多孔質媒質方程式には古典解が存在し

ないことが知られている．そのため，(NFP)の時間大域的古典解が存在するような既知関数の十分条
件を考察する．次に解空間の定義をする．



2 Hölder空間
(NFP) の解空間として，[5, 6] を参考に Hölder 空間の定義をする．そこで，0 < 𝛽 < 1，関数

𝑓 : Ω× [0, 𝑇) → Rに対して，一様ノルム ∥ 𝑓 ∥𝐶，空間変数に関する Hölderセミノルム [ 𝑓 ]𝛽，時間変
数に関する Hölderセミノルム ⟨ 𝑓 ⟩𝛽 を以下で定義する．

∥ 𝑓 ∥𝐶 := sup
(𝑥,𝑡 ) ∈Ω×[0,𝑇 )

| 𝑓 (𝑥, 𝑡) |,

[ 𝑓 ]𝛽 := sup
(𝑥,𝑡 ) , (𝑦,𝑡 ) ∈Ω×[0,𝑇 )

| 𝑓 (𝑥, 𝑡) − 𝑓 (𝑦, 𝑡) |
|𝑥 − 𝑦 |𝛽 ,

⟨ 𝑓 ⟩𝛽 := sup
(𝑥,𝑡 ) , (𝑥,𝑠) ∈Ω×[0,𝑇 )

| 𝑓 (𝑥, 𝑡) − 𝑓 (𝑥, 𝑠) |
|𝑡 − 𝑠 |𝛽 .

時空間の Hölder空間 𝐶𝛽,𝛽/2 (Ω × [0, 𝑇))，𝐶2+𝛽,1+𝛽/2 (Ω × [0, 𝑇)) を以下で定める．

𝐶𝛽,𝛽/2 (Ω × [0, 𝑇)) := { 𝑓 : Ω × [0, 𝑇) → R
��∥ 𝑓 ∥𝐶𝛽,𝛽/2 (Ω×[0,𝑇 ) ) < ∞},

𝐶2+𝛽,1+𝛽/2 (Ω × [0, 𝑇)) := { 𝑓 : Ω × [0, 𝑇) → R
��∥ 𝑓 ∥𝐶2+𝛽,1+𝛽/2 (Ω×[0,𝑇 ) ) < ∞}.

ここで，∥ 𝑓 ∥𝐶𝛽,𝛽/2 (Ω×[0,𝑇 ) )，∥ 𝑓 ∥𝐶2+𝛽,1+𝛽/2 (Ω×[0,𝑇 ) ) は

∥ 𝑓 ∥𝐶𝛽,𝛽/2 (Ω×[0,𝑇 ) ) := ∥ 𝑓 ∥𝐶 + [ 𝑓 ]𝛽,Ω×[0,𝑇 ) + ⟨ 𝑓 ⟩𝛽/2,Ω×[0,𝑇 ) ,

∥ 𝑓 ∥𝐶2+𝛽,1+𝛽/2 (Ω×[0,𝑇 ) ) := ∥ 𝑓 ∥𝐶 + ∥∇ 𝑓 ∥𝐶 + ∥∇2 𝑓 ∥𝐶 ,

+




𝜕 𝑓𝜕𝑡 



𝐶 +

[
∇2 𝑓

]
𝛽,Ω×[0,𝑇 ) +

[
𝜕 𝑓

𝜕𝑡

]
𝛽,Ω×[0,𝑇 )

+ ⟨∇ 𝑓 ⟩ (1+𝛽)/2,Ω×[0,𝑇 ) +
〈
∇2 𝑓

〉
𝛽/2,Ω×[0,𝑇 ) +

〈
𝜕 𝑓

𝜕𝑡

〉
𝛽/2,Ω×[0,𝑇 )

(9)

と定義する．次に，先ほど定義した Hölderノルムに対しての性質を紹介する．

補題 2.1. 任意の 𝜃 ∈ 𝐶2+𝛽,1+𝛽/2 (Ω × [0, 𝑇)) に対して，𝜃 (𝑥, 0) = 0とする．このとき，

∥∇𝜃∥𝐶𝛽,𝛽/2 (Ω×[0,𝑇 ) ) ≤ 3(𝑇 (1+𝛽)/2 + 𝑇1/2)∥𝜃∥𝐶2+𝛽,1+𝛽/2 (Ω×[0,𝑇 ) ) .

が成り立つ．

証明. ∥∇𝜃∥𝐶𝛽,𝛽/2 (Ω×[0,𝑇 ) ) を評価するために，∇𝜃 の一様ノルムを上から評価する．

|∇𝜃 | = |∇𝜃 (𝑥, 𝑡) − ∇𝜃 (𝑥, 0) |
|𝑡 | (1+𝛽)/2

|𝑡 | (1+𝛽)/2 ≤ ⟨∇𝜃⟩(1+𝛽)/2𝑇 (1+𝛽)/2.

が成り立つ．そのため，
∥∇𝜃∥𝐶 ≤ 𝑇 (1+𝛽)/2∥𝜃∥𝐶2+𝛽,1+𝛽/2 (Ω×[0,𝑇 ) ) . (10)



が成り立つ．次に空間に対する Hölderセミノルムを評価する．|𝑥 − 𝑥′ | < 𝑡1/2 のとき，

|∇𝜃 (𝑥, 𝑡) − ∇𝜃 (𝑥′, 𝑡) | =
����∫ 1

0

𝑑

𝑑𝜏
∇𝜃 (𝜏𝑥 + (1 − 𝜏)𝑥′, 𝑡) 𝑑𝜏

����
=

����∫ 1

0
(𝑥 − 𝑥′)∇2𝜃 (𝜏𝑥 + (1 − 𝜏)𝑥′, 𝑡) 𝑑𝜏

����
≤ |𝑥 − 𝑥′ |

∫ 1

0
|∇2𝜃 (𝜏𝑥 + (1 − 𝜏)𝑥′, 𝑡) | 𝑑𝜏.

が成り立つ．

|∇2𝜃 (𝜏𝑥 + (1 − 𝜏)𝑥′, 𝑡) − ∇2𝜃 (𝜏𝑥 + (1 − 𝜏)𝑥′, 0) |
|𝑡 |𝛽/2

|𝑡 |𝛽/2 ≤ ⟨∇2𝜃⟩𝛽/2𝑇𝛽/2.

より，

|∇𝜃 (𝑥, 𝑡) − ∇𝜃 (𝑥′, 𝑡) | ≤ |𝑥 − 𝑥′ |⟨∇2𝜃⟩𝛽/2𝑇𝛽/2 = |𝑥 − 𝑥′ |𝛽 |𝑥 − 𝑥′ |1−𝛽 ⟨∇2𝜃⟩𝛽/2𝑇𝛽/2.

が成り立つ．|𝑥 − 𝑥′ | < 𝑡1/2 なので，

|∇𝜃 (𝑥, 𝑡) − ∇𝜃 (𝑥′, 𝑡) |
|𝑥 − 𝑥′ |𝛽 ≤ 𝑇1/2∥𝜃∥𝐶2+𝛽,1+𝛽/2 (Ω×[0,𝑇 ) ) .

が成り立つので |𝑥 − 𝑥′ | < 𝑡1/2 の範囲で両辺空間変数に対して supをとると，以下が成り立つ．

[∇𝜃]𝛽 ≤ 𝑇1/2∥𝜃∥𝐶2+𝛽,1+𝛽/2 (Ω×[0,𝑇 ) ) .

|𝑥 − 𝑥′ | ≥ 𝑡1/2 のとき，任意の (𝑥, 𝑡) ∈ Ω × [0, 𝑇)

|∇𝜃 (𝑥, 𝑡) | = |∇𝜃 (𝑥, 𝑡) − ∇𝜃 (𝑥, 0) |
|𝑡 | (1+𝛽)/2

|𝑡 |1/2 |𝑡 |𝛽/2 ≤ ⟨∇𝜃⟩(1+𝛽)/2𝑇1/2 |𝑥 − 𝑥′ |𝛽 (11)

が成り立つ．よって，

|∇𝜃 (𝑥, 𝑡) − ∇𝜃 (𝑥′, 𝑡) | ≤ |∇𝜃 (𝑥, 𝑡) | + |∇𝜃 (𝑥′, 𝑡) | ≤ 2⟨∇𝜃⟩(1+𝛽)/2𝑇1/2 |𝑥 − 𝑥′ |𝛽 .

したがって，両辺 |𝑥 − 𝑥′ |𝛽 で割り，上限をとると

[∇𝜃]𝛽 ≤ 2𝑇1/2∥𝜃∥𝐶2+𝛽,1+𝛽/2 (Ω×[0,𝑇 ) ) (12)

次に時間変数に関する Hölderセミノルムの評価を考察する．

|∇𝜃 (𝑥, 𝑡) − ∇𝜃 (𝑥, 𝑡′) | = |∇𝜃 (𝑥, 𝑡) − ∇𝜃 (𝑥, 𝑡′) |
|𝑡 − 𝑡′ | (1+𝛽)/2

|𝑡 − 𝑡′ | (1+𝛽)/2

≤ ⟨∇𝜃⟩(1+𝛽)/2𝑇1/2 |𝑡 − 𝑡′ |𝛽/2.

両辺 |𝑡 − 𝑡′ |𝛽/2 で割ると，
|∇𝜃 (𝑥, 𝑡) − ∇𝜃 (𝑥, 𝑡′) |

|𝑡 − 𝑡′ |𝛽/2
≤ ⟨∇𝜃⟩(1+𝛽)/2𝑇1/2.

両辺 𝑡, 𝑡′ に対して上限をとると，

⟨∇𝜃⟩𝛽/2 ≤ 𝑇1/2∥𝜃∥𝐶2+𝛽,1+𝛽/2 (Ω×[0,𝑇 ) )



が成り立つ．したがって，

∥∇𝜃∥𝐶𝛽,𝛽/2 (Ω×[0,𝑇 ) ) ≤ 3(𝑇 (1+𝛽)/2 + 𝑇1/2)∥𝜃∥𝐶2+𝛽,1+𝛽/2 (Ω×[0,𝑇 ) ) .

が成り立つ． □

補題 2.2. 任意の 𝜃 ∈ 𝐶2+𝛽,1+𝛽/2 (Ω × [0, 𝑇)) に対して，𝜃 (𝑥, 0) = 0とする．このとき，

∥𝜃∥𝐶𝛽,𝛽/2 (Ω×[0,𝑇 ) ) ≤ 3(𝑇 + 𝑇1−𝛽/2)∥𝜃∥𝐶2+𝛽,1+𝛽/2 (Ω×[0,𝑇 ) ) .

が成り立つ．

補題 2.3. 任意の 𝜃 ∈ 𝐶𝛽,𝛽/2 (Ω × [0, 𝑇))，𝜃 ∈ 𝐶𝛽,𝛽/2 (Ω × [0, 𝑇)) に対して，𝜃𝜃 ∈ 𝐶𝛽,𝛽/2 (Ω × [0, 𝑇))
となり，

∥𝜃𝜃∥𝐶𝛽,𝛽/2 (Ω×[0,𝑇 ) ) ≤ ∥𝜃∥𝐶𝛽,𝛽/2 (Ω×[0,𝑇 ) ) ∥𝜃∥𝐶𝛽,𝛽/2 (Ω×[0,𝑇 ) )

3 主定理

定理 1.3 では時間大域的古典解の存在を仮定することで解の漸近挙動を考察している．そこで，
(NFP)の古典解の存在について考察する．𝑑 が定数のとき，(NFP)は多孔質媒質型の非線形拡散を持
つ移流拡散方程式となる．解の存在性に関してはよく知られている．𝑑 が 𝑥 に依存する関数の場合，

我々が調べた限り，抽象的な発展方程式の可解性の理論を適用することができない．𝜇に関する方程

式を考察することで以下の結果を得た．

定理 3.1. 0 < 𝛽 < 1に対して，𝜙, 𝑑, 𝜌0 ∈ 𝐶2+𝛽 (Ω) とする．さらに，𝑑 (𝑥), 𝜌0 (𝑥) は Ω上正値であり，

𝛼𝑑 (𝑥)𝜌𝛼−1
0 (𝑥) > max 𝜙 − 𝜙(𝑥) を満たすと仮定する．このとき，ある 𝑇 > 0が存在して，(NFP)の古

典解 𝜌 ∈ 𝐶2+𝛽,1+𝛽/2 (Ω × [0, 𝑇)) が存在する．

注意 3.2. 定理 3.1の仮定から，(NFP)の解は退化による正則性の損失に関する問題は起こらない．そ
こで，Hölderノルムに関しての定量評価を導く必要がある．しかし，未知関数の空間微分の評価な
どを得る必要があるためとても困難である．

注意 3.3. 𝜇 = 𝑑 (𝑥) log 𝜌 + 𝜙(𝑥) の場合 [3]では周期境界条件のもと時間大域的古典解，[4]では自然
境界条件のもと時間局所解の存在性が考察されている．

4 主定理の証明

未知関数を 𝜇に書き換えると，(NFP)の第一方程式は

𝜇𝑡 = (𝛼 − 1)(𝜇 − 𝜙(𝑥))Δ𝜇 − (∇𝜙(𝑥) · ∇𝜇) − (𝜇 − 𝜙(𝑥)) (∇ log 𝑑 (𝑥) · ∇𝜇) + |∇𝜇 |2 (13)

となる．(13)の解が存在すれば，𝜇 の定義から，𝑑 (𝑥)，𝜙(𝑥) は既知関数なので，(NFP)の解 𝜌 が存

在することがわかる．主定理の仮定から，𝜇 − 𝜙(𝑥) > 0が成り立つ．よって，(13)は一様放物型方程



式となる．𝜇を 𝜇0 (𝑥) = 𝜇(𝑥, 0) の周りで線形化すると

Φ𝑡 = 𝐿Φ + 𝐿𝜇 + 𝐹𝜇 (14)

となる．ただし，𝐿 と 𝐹 は

𝐿Φ := (𝛼 − 1) (𝜇0 (𝑥) − 𝜙(𝑥))ΔΦ − (𝜇0 (𝑥) − 𝜙) (∇ log 𝑑 (𝑥) · ∇Φ) + ∇𝜙(𝑥) · ∇Φ + 2(∇𝜇0 (𝑥) · ∇Φ)
+ (𝛼 − 1)ΦΔ𝜇0 (𝑥) − (∇ log 𝑑 (𝑥) · ∇𝜇0 (𝑥))Φ,

𝐹𝜇 := (𝛼 − 1) (𝜇 − 𝜇0)Δ𝜇 − (𝜇 − 𝜇0) (∇ log 𝑑 (𝑥) · ∇𝜇) + |∇𝜇 |2

− 2(∇𝜇0 (𝑥) · ∇𝜇) + 𝜇(∇ log 𝑑 (𝑥) · ∇𝜇0 (𝑥)) − (𝛼 − 1)𝜇Δ𝜇0 (𝑥).

である. 線形化された方程式の問題については [5, 6] にて議論されている．与えられた 𝜇 に対して

(14) の解 Φ を対応させる解作用素 𝑆 とすると，(13) の可解性は 𝑆 の不動点を求める問題に帰着さ

れる．

𝑋𝑀,𝑇 := {𝜁 ∈ 𝐶2+𝛽,1+𝛽/2 (Ω × [0, 𝑇))
��∇𝜁 · 𝜈 |𝜕Ω = 0, ∥𝜁 − 𝜇0∥𝐶2+𝛽,1+𝛽/2 (Ω×[0,𝑇 ) ) ≤ 𝑀} (15)

以上の空間で 𝑇，𝑀 を適切に選ぶことで，作用素 S が縮小写像になることを示す．
Φ𝑡 = 𝐿Φ + 𝐹𝜇1, 𝑥 ∈ Ω, 𝑡 > 0,

Φ(𝑥, 0) = 𝜇(𝑥, 0), 𝑥 ∈ Ω,

∇Φ · 𝜈 = 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0.
(16)

(16)の外力項をそれぞれ 𝐹𝜇1，𝐹𝜇2 としたときの解 Φ，Φ̃に対して Ψ = Φ − Φ̃とした際の方程式を

考える．[5]の結果から，以下が成り立つ．

補題 4.1. [5, P320, Theorem5.2]シャウダー評価
Ψ𝑡 = 𝐿Ψ + 𝐹𝜇1 − 𝐹𝜇2, 𝑥 ∈ Ω, 𝑡 > 0

Ψ(𝑥, 0) = 0, 𝑥 ∈ Ω

∇Ψ · 𝜈 = 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0
(17)

以上の方程式の解 Ψが存在し，ある定数 𝐶S が存在して

∥Ψ∥𝐶2+𝛽,1+𝛽/2 (Ω×[0,𝑇 ) ) ≤ 𝐶s∥𝐹𝜇1 − 𝐹𝜇2∥𝐶𝛽,𝛽/2 (Ω×[0,𝑇 ) )

が成り立つ．

注意 4.2. Ψの解が𝐶2+𝛽,1+𝛽/2 (Ω×[0, 𝑇))の関数空間で存在したとき，𝐹𝜇1−𝐹𝜇2は𝐶𝛽,𝛽/2 (Ω×[0, 𝑇))
のクラスの関数になる．補題 4.1 の不等式は，外力項 𝐹𝜇1 − 𝐹𝜇2 の適切な最大正則性の不等式と

いう．

補題 4.1を用いて解作用素 𝑆 : 𝑋𝑀,𝑇 → 𝑋𝑀,𝑇 に対しての縮小性を示す．

∥𝑆𝜇1 − 𝑆𝜇2∥𝐶2+𝛽,1+𝛽/2 (Ω×[0,𝑇 ) ) = ∥Ψ1 − Ψ2∥𝐶2+𝛽,1+𝛽/2 (Ω×[0,𝑇 ) ) ≤ ∥𝐹𝜇1 − 𝐹𝜇2∥𝐶𝛽,𝛽/2 (Ω×[0,𝑇 ) )

解作用素が縮小写像になるためには,ある定数 𝐶 < 1が存在して，

∥𝐹𝜇1 − 𝐹𝜇2∥𝐶𝛽,𝛽/2 (Ω×[0,𝑇 ) ) ≤ 𝐶∥𝜇1 − 𝜇2∥𝐶2+𝛽,1+𝛽/2 (Ω×[0,𝑇 ) )



が成り立てばよい．𝐹 の定義から，

∥𝐹𝜇1 − 𝐹𝜇2∥𝐶𝛽,𝛽/2 (Ω×[0,𝑇 ) ) = ∥(𝛼 − 1) (𝜇1 − 𝜇0)Δ𝜇1 − (𝛼 − 1) (𝜇2 − 𝜇0)Δ𝜇2 − (𝛼 − 1) (𝜇1 − 𝜇2)Δ𝜇0

− (𝜇1 − 𝜇0) (∇ log 𝑑 · ∇𝜇1) + (𝜇2 − 𝜇0)(∇ log 𝑑 · ∇𝜇2)
+ (𝜇1 − 𝜇2) (∇ log 𝑑 · ∇𝜇0) + |∇𝜇1 |2

− |∇𝜇2 |2 − 2(∇𝜇0 · ∇(𝜇1 − 𝜇2))∥𝐶𝛽,𝛽/2 (Ω×[0,𝑇 ) )
≤ ∥(𝛼 − 1) (𝜇1 − 𝜇0)Δ𝜇1 − (𝛼 − 1) (𝜇2 − 𝜇0)Δ𝜇2

− (𝛼 − 1)(𝜇1 − 𝜇2)Δ𝜇0∥𝐶𝛽,𝛽/2 (Ω×[0,𝑇 ) )
+ ∥ − (𝜇1 − 𝜇0)(∇ log 𝑑 · ∇𝜇1) + (𝜇2 − 𝜇0)(∇ log 𝑑 · ∇𝜇2)
+ (𝜇1 − 𝜇2) (∇ log 𝑑 · ∇𝜇0)∥𝐶𝛽,𝛽/2 (Ω×[0,𝑇 ) )

+ ∥|∇𝜇1 |2 − |∇𝜇2 |2 − 2(∇𝜇0 · ∇(𝜇1 − 𝜇2))∥𝐶𝛽,𝛽/2 (Ω×[0,𝑇 ) )
=: 𝑁1 + 𝑁2 + 𝑁3

となる．𝑁1, 𝑁2, 𝑁3 をそれぞれ ∥𝜇1 − 𝜇2∥𝐶2+𝛽,1+𝛽/2 (Ω×[0,𝑇 ) ) で評価することを考える．初めに 𝑁1 につ

いて考察する．

(𝛼 − 1) (𝜇1 − 𝜇0)Δ(𝜇1 − 𝜇2) = (𝛼 − 1)(𝜇1 − 𝜇0)Δ𝜇1 − (𝛼 − 1)(𝜇1 − 𝜇0)Δ𝜇2

なので，

𝑁1 = ∥(𝛼 − 1)(𝜇1 − 𝜇0)Δ(𝜇1 − 𝜇2) + (𝛼 − 1)(𝜇1 − 𝜇2)Δ(𝜇2 − 𝜇0)∥𝐶𝛽,𝛽/2 (Ω×[0,𝑇 ) ) ,

≤ ∥(𝛼 − 1)(𝜇1 − 𝜇0)Δ(𝜇1 − 𝜇2)∥𝐶𝛽,𝛽/2 (Ω×[0,𝑇 ) ) + ∥(𝛼 − 1)(𝜇1 − 𝜇2)Δ(𝜇2 − 𝜇0)∥𝐶𝛽,𝛽/2 (Ω×[0,𝑇 ) ) .

補題 2.3から，

∥(𝛼 − 1)(𝜇1 − 𝜇0)Δ(𝜇1 − 𝜇2)∥𝐶𝛽,𝛽/2 (Ω×[0,𝑇 ) ) ≤ (𝛼 − 1)∥𝜇1 − 𝜇0∥𝐶𝛽,𝛽/2 (Ω×[0,𝑇 ) )
× ∥Δ(𝜇1 − 𝜇2)∥𝐶𝛽,𝛽/2 (Ω×[0,𝑇 ) ) ,

∥(𝛼 − 1)(𝜇1 − 𝜇2)Δ(𝜇2 − 𝜇0)∥𝐶𝛽,𝛽/2 (Ω×[0,𝑇 ) ) ≤ (𝛼 − 1)∥𝜇1 − 𝜇2∥𝐶𝛽,𝛽/2 (Ω×[0,𝑇 ) )
× ∥Δ(𝜇1 − 𝜇0)∥𝐶𝛽,𝛽/2 (Ω×[0,𝑇 ) ) .

補題 2.2と 𝜇1, 𝜇2 ∈ 𝑋𝑀,𝑇 より，

∥𝜇1 − 𝜇0∥𝐶𝛽,𝛽/2 (Ω×[0,𝑇 ) ) ≤ 3(𝑇 + 𝑇1−𝛽/2)∥𝜇1 − 𝜇0∥𝐶2+𝛽,1+𝛽/2 (Ω×[0,𝑇 ) ) ≤ 3(𝑇 + 𝑇1−𝛽/2)𝑀,

∥𝜇1 − 𝜇2∥𝐶𝛽,𝛽/2 (Ω×[0,𝑇 ) ) ≤ 3(𝑇 + 𝑇1−𝛽/2)∥𝜇1 − 𝜇2∥𝐶2+𝛽,1+𝛽/2 (Ω×[0,𝑇 ) ) ,

∥Δ(𝜇1 − 𝜇2)∥𝐶𝛽,𝛽/2 (Ω×[0,𝑇 ) ) ≤ ∥𝜇1 − 𝜇2∥𝐶2+𝛽,1+𝛽/2 (Ω×[0,𝑇 ) ) ,

∥Δ(𝜇1 − 𝜇0)∥𝐶𝛽,𝛽/2 (Ω×[0,𝑇 ) ) ≤ ∥𝜇1 − 𝜇0∥𝐶2+𝛽,1+𝛽/2 (Ω×[0,𝑇 ) ) ≤ 𝑀

(18)

が成り立つ．したがって,

𝑁1 ≤ ∥(𝛼 − 1)(𝜇1 − 𝜇0)Δ(𝜇1 − 𝜇2)∥𝐶𝛽,𝛽/2 (Ω×[0,𝑇 ) ) + ∥(𝛼 − 1) (𝜇1 − 𝜇2)Δ(𝜇2 − 𝜇0)∥𝐶𝛽,𝛽/2 (Ω×[0,𝑇 ) ) ,

≤ 6𝑀 (𝛼 − 1)(𝑇 + 𝑇1−𝛽/2)∥𝜇1 − 𝜇2∥𝐶2+𝛽,1+𝛽/2 (Ω×[0,𝑇 ) )
(19)

が成り立つ．次に 𝑁2 の評価を求める．

− (𝜇1 − 𝜇0) (∇ log 𝑑 · ∇𝜇1) + (𝜇2 − 𝜇0) (∇ log 𝑑 · ∇𝜇2) + (𝜇1 − 𝜇2) (∇ log 𝑑 · ∇𝜇0)
= −(𝜇1 − 𝜇0)∇ log 𝑑 · ∇(𝜇1 − 𝜇2) − (𝜇1 − 𝜇2)∇ log 𝑑 · ∇(𝜇2 − 𝜇0)



が成り立つ．したがって，

𝑁2 ≤ ∥(𝜇1 − 𝜇0)∇ log 𝑑 · ∇(𝜇1 − 𝜇2)∥𝐶𝛽,𝛽/2 (Ω×[0,𝑇 ) ) + ∥(𝜇1 − 𝜇2)∇ log 𝑑∇(𝜇2 − 𝜇0)∥𝐶𝛽,𝛽/2 (Ω×[0,𝑇 ) ) .

補題 2.3，補題 2.2，補題 2.1より，

∥(𝜇1 − 𝜇0)∇ log 𝑑 · ∇(𝜇1 − 𝜇2)∥𝐶𝛽,𝛽/2 (Ω×[0,𝑇 ) )

≤ 9(𝑇 (1+𝛽)/2 + 𝑇1/2) (𝑇 + 𝑇1−𝛽/2)𝑀 ∥∇ log 𝑑∥𝐶𝛽,𝛽/2 (Ω×[0,𝑇 ) ) ∥𝜇1 − 𝜇2∥𝐶2+𝛽,1+𝛽/2 (Ω×[0,𝑇 ) ) ,

∥(𝜇1 − 𝜇2)∇ log 𝑑∇(𝜇2 − 𝜇0)∥𝐶𝛽,𝛽/2 (Ω×[0,𝑇 ) )

≤ 9(𝑇 (1+𝛽)/2 + 𝑇1/2) (𝑇 + 𝑇1−𝛽/2)𝑀 ∥∇ log 𝑑∥𝐶𝛽,𝛽/2 (Ω×[0,𝑇 ) ) ∥𝜇1 − 𝜇2∥𝐶2+𝛽,1+𝛽/2 (Ω×[0,𝑇 ) ) .

したがって，𝑁2 は以下のように評価される．

𝑁2 ≤ 18(𝑇 (1+𝛽)/2 + 𝑇1/2)(𝑇 + 𝑇1−𝛽/2)𝑀 ∥∇ log 𝑑∥𝐶𝛽,𝛽/2 (Ω×[0,𝑇 ) ) ∥𝜇1 − 𝜇2∥𝐶2+𝛽,1+𝛽/2 (Ω×[0,𝑇 ) ) .

次に，𝑁3 の評価を考察する．

|∇𝜇1 |2 − |∇𝜇2 |2 − 2(∇𝜇0 · ∇(𝜇1 − 𝜇2))
= (∇(𝜇1 − 𝜇2) · ∇(𝜇1 − 𝜇0)) + (∇(𝜇1 − 𝜇2) · ∇(𝜇2 − 𝜇0))

が成り立つことから，

𝑁3 = ∥∇(𝜇1 − 𝜇0) · ∇(𝜇1 − 𝜇2) + ∇(𝜇1 − 𝜇2) · ∇(𝜇2 − 𝜇0)∥𝐶𝛽,𝛽/2 (Ω×[0,𝑇 ) )

が得られる．補題 2.3，補題 2.2，補題 2.1より，

𝑁3 ≤ 18(𝑇 (1+𝛽)/2 + 𝑇1/2)2𝑀 ∥𝜇1 − 𝜇2∥𝐶2+𝛽,1+𝛽/2 (Ω×[0,𝑇 ) )

が成り立つ．したがって，以上の結果をまとめると，

∥𝐹𝜇1 − 𝐹𝜇2∥𝐶𝛽,𝛽/2 (Ω×[0,𝑇 ) )

≤ (6(𝛼 − 1)(𝑇 + 𝑇1−𝛽/2) + 18(𝑇 (1+𝛽)/2 + 𝑇1/2) (𝑇 + 𝑇1−𝛽/2)
+ 18(𝑇 (1+𝛽)/2 + 𝑇1/2)2)𝑀 ∥𝜇1 − 𝜇2∥𝐶2+𝛽,1+𝛽/2 (Ω×[0,𝑇 ) ) .

したがって，まとめると

∥𝑆𝜇1 − 𝑆𝜇2∥𝐶2+𝛽,1+𝛽/2 (Ω×[0,𝑇 ) ) ≤ 𝐶S∥𝐹𝜇1 − 𝐹𝜇2∥𝐶𝛽,𝛽/2 (Ω×[0,𝑇 ) )

≤ (6(𝛼 − 1)(𝑇 + 𝑇1−𝛽/2) + 18(𝑇 (1+𝛽)/2 + 𝑇1/2) (𝑇 + 𝑇1−𝛽/2)
+ 18(𝑇 (1+𝛽)/2 + 𝑇1/2)2)
× 𝑀𝐶S∥𝜇1 − 𝜇2∥𝐶2+𝛽,1+𝛽/2 (Ω×[0,𝑇 ) )

が得られる．したがって，

(6(𝛼 − 1) (𝑇 + 𝑇1−𝛽/2) + 18(𝑇 (1+𝛽)/2 + 𝑇1/2)(𝑇 + 𝑇1−𝛽/2) + 18(𝑇 (1+𝛽)/2 + 𝑇1/2)2)𝑀𝐶S < 1

となるように 𝑇 を十分小さくとると，解作用素 𝑆 は縮小写像になる．バナッハの不動点定理から，

𝑆𝜇 = 𝜇となる 𝑆 の不動点 𝜇が存在する．よって，(NFP)は時間局所解が存在することが示せた．
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